Natural selection drives the accumulation of amino acid tandem repeats in human proteins.

نویسندگان

  • Loris Mularoni
  • Alice Ledda
  • Macarena Toll-Riera
  • M Mar Albà
چکیده

Amino acid tandem repeats are found in a large number of eukaryotic proteins. They are often encoded by trinucleotide repeats and exhibit high intra- and interspecies size variability due to the high mutation rate associated with replication slippage. The extent to which natural selection is important in shaping amino acid repeat evolution is a matter of debate. On one hand, their high frequency may simply reflect their high probability of expansion by slippage, and they could essentially evolve in a neutral manner. On the other hand, there is experimental evidence that changes in repeat size can influence protein-protein interactions, transcriptional activity, or protein subcellular localization, indicating that repeats could be functionally relevant and thus shaped by selection. To gauge the relative contribution of neutral and selective forces in amino acid repeat evolution, we have performed a comparative analysis of amino acid repeat conservation in a large set of orthologous proteins from 12 vertebrate species. As a neutral model of repeat evolution we have used sequences with the same DNA triplet composition as the coding sequences--and thus expected to be subject to the same mutational forces--but located in syntenic noncoding genomic regions. The results strongly indicate that selection has played a more important role than previously suspected in amino acid tandem repeat evolution, by increasing the repeat retention rate and by modulating repeat size. The data obtained in this study have allowed us to identify a set of 92 repeats that are postulated to play important functional roles due to their strong selective signature, including five cases with direct experimental evidence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single Amino Acid Repeats in the Proteome World: Structural, Functional, and Evolutionary Insights

Microsatellites or simple sequence repeats (SSR) are abundant, highly diverse stretches of short DNA repeats present in all genomes. Tandem mono/tri/hexanucleotide repeats in the coding regions contribute to single amino acids repeats (SAARs) in the proteome. While SSRs in the coding region always result in amino acid repeats, a majority of SAARs arise due to a combination of various codons rep...

متن کامل

Insight into Role of Selection in the Evolution of Polyglutamine Tracts in Humans

Glutamine tandem repeats are common in eukaryotic proteins. Although some studies have proposed that replication slippage plays an important role in shaping these repeats, the role of natural selection in glutamine tandem repeat evolution is somewhat unclear. In this study, we identified all of the glutamine tandem repeats containing four or more glutamines in human proteins and then estimated ...

متن کامل

Comparative analysis of amino acid repeats in rodents and humans.

Amino acid tandem repeats, also called homopolymeric tracts, are extremely abundant in eukaryotic proteins. To gain insight into the genome-wide evolution of these regions in mammals, we analyzed the repeat content in a large data set of rat-mouse-human orthologs. Our results show that human proteins contain more amino acid repeats than rodent proteins and that trinucleotide repeats are also mo...

متن کامل

Global analysis of tandem aromatic octapeptide repeats: The significance of the aromatic-glycine motif

MOTIVATION Tandem peptide repeats play a key role in self-assembly and aggregation processes. A notable example is the occurrence of tandem peptide repeats in prionic proteins and their role in the aggregation process that leads to the formation of the prion. One of the structural characteristics that is evident from the comparison of mammalian and yeast prion proteins is the presence of aromat...

متن کامل

Mutational Pressure Drives Evolution of Synonymous Codon Usage in Genetically Distinct Oenothera plastomes

Background: Most of the amino acids are encoded by more than one codon, termed as synonymous codons. Synonymous codon usage is not random as it is unique to species. In each amino acid family, some synonymous codons are preferred and this is referred to as synonymous codon usage bias (SCUB). Trends associated with evolution of SCUB and factors influencing its diversification in plastomes of gen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genome research

دوره 20 6  شماره 

صفحات  -

تاریخ انتشار 2010